2002 Vol. 4, No. 19 3325-3327

Decarbopalladation of π -Allylpalladium Intermediates Formed from Palladium-Catalyzed Arylations of 3-Allen-1-ols

Chang Ho Oh,* Seung Hyun Jung, Su Youn Bang, and Dai In Park

Department of Chemistry, Hanyang University, Sungdong-Gu, Seoul 133-791, Korea changho@hanyang.ac.kr

Received August 2, 2002

ABSTRACT

Unusual palladium-catalyzed arylative fragmentations of acyclic 3-allen-1-ols were observed. Oxidative addition of Pd(0) to aryl halides would form the arylpalladium halides, which added to the central carbon of allenes via carbopalladation to form the π -allylpalladium intermediates. The π -allylpalladium intermediates would be reductively eliminated via carbon—carbon cleavage to give the arylated dienes and the α -hydroxyalkylpalladium intermediates, which were further reductively eliminated to the corresponding aldehydes.

Palladium-catalyzed reactions involving nucleophilic attack on π -alkene- and π -allylpalladium complexes provide convenient and powerful tools for organic synthesis, and a large number of selective organic transformations have been reported. Compared to alkynes, olefins, and 1,3-dienes, allenes have attracted considerable interest only in recent years. Many examples of palladium-catalyzed carbopalladations, carbonylations, dimerizations, vaidations, and hydropalladations involving allenes were reported together with a variety of intramolecular variants.

Mechanistically, allenes are capable of undergoing 1,2-addition under palladium catalysis with both electrophiles and nucleophiles with opposite regioselectivities, where electrophiles attach to the central carbon and nucleophiles to the 1- or 3-carbon of the allene. In addition to these, several transition metal catalysts associated with ruthenium, titanium, and lanthanides were developed to mediate a

^{(1) (}a) Tsuji, J. Palladium Reagents and Catalysts: Innovations in Organic Synthesis; John Wiley & Sons: Chichester, 1995. (b) Bäckvall, J. E. Metal-Catalyzed Cross Coupling Reactions; Stang, P., Diederich, F., Eds.; VCH: Weinheim, 1998. (c) Müller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675.

^{(2) (}a) Ahmar, M.; Cazes, B.; Goré, J. *Tetrahedron Lett.* **1984**, *25*, 4505. (b) Cazes, B. *Pure Appl. Chem.* **1990**, *62*, 1867. (c) Gamez, P.; Ariente, C.; Goré, J.; Cazes, B. *Tetrahedron* **1998**, *54*, 14835. (d) Karstens, W. F.; Rutjes, F. P. J. T.; Hiematra, H. *Tetrahedron Lett.* **1997**, *37*, 6275. (e) Musch, P. W.; Engels, B. *J. Am. Chem. Soc.* **2001**, *123*, 5557.

^{(3) (}a) Okuro, K.; Alper, H. *J. Org. Chem.* **1997**, *62*, 1566. (b) Xiao, W. J.; Vasapollo, G.; Alper, H. *J. Org. Chem.* **1998**, *63*, 2609. (c) Grigg, R.; Monteith, M.; Sridharan, V.; Terrier, C. *Tetrahedron* **1998**, *54*, 3885.

^{(4) (}a) Englert, M.; Jolly, P. W.; Wilke, G. Angew. Chem., Int. Ed. Engl. 1972, 11, 136. (b) Pasto, D. J.; Huang, N.-Z.; Eigenbrot, C. W. J. Am. Chem. Soc. 1985, 107, 3160. (c) Coulson, D. R. J. Org. Chem. 1973, 38, 1483. (d) Arisawa, M.; Sugihara, T.; Yamaguchi, M. Chem. Commun. 1998, 2615

^{(5) (}a) Jonasson, C.; Horváth, A.; Bäckvall, J. E. *J. Am. Chem. Soc.* **2000**, *122*, 9600. (b) Xiong, H.; Hsung, R. P.; Berry, C. R.; Rameshkumar, C. *J. Am. Chem. Soc.* **2001**, *123*, 7174.

^{(6) (}a) Yamamoto, Y.; Radhakrishan, U. Chem. Soc. Rev. **1999**, 28, 199. (b) Meguro, M.; Yamamoto, Y. J. Org. Chem. **1999**, 64, 694. (c) Trost, B. M.; Gerusz, V. J. J. Am. Chem. Soc. **1995**, 117, 5156. (d) Besson, L.; Goré, J.; Cazes, B. Tetrahedron Lett. **1995**, 36, 3853.

^{(7) (}a) Grigg, R.; Sridharan, V.; Xu, L.-H. J. Chem. Soc., Chem. Commun. 1995, 1903. (b) Grigg, R.; Sridharan, V.; Terrier, C. Tetraedron Lett. 1996, 37, 4221. (c) Grigg, R.; Loganathan, V.; Sridharan, V.; Stevenson, P.; Sukirthalingam, S.; Worakun, T. Tetrahedron 1996, 52, 11479. (d) Larock, R. C.; Zenner, J. M. J. Org. Chem. 1995, 60, 482. (e) Larock, R. C.; He, Y.; Leong, W. W.; Han, X.; Refvik, M. D.; Jenner, J. M. J. Org. Chem. 1998, 63, 6859. (f) Zenner, J. M.; Larock, R. C. J. Org. Chem. 1999, 64, 7312.

⁽⁸⁾ For reactions with electrophiles, see: (a) Yang, F.-Y.; Wu, M.-Y.; Cheng, C.-H. *J. Am. Chem. Soc.* **2000**, *122*, 7122. (b) Ma, S.; Zhao, S. *J. Am. Chem. Soc.* **1999**, *121*, 7943. (c) Huang, T.-H.; Chang, H.-M.; Wu, M.-Y.; Cheng, C.-H. *J. Org. Chem.* **2002**, *67*, 99. For reactions with nucleophiles, see: (d) Yamamoto, Y.; Al-Masum, M.; Fujiwara, N. *Chem. Commun.* **1996**, 381.

⁽⁹⁾ Trost, B. M.; Pinkerton, A. B. J. Am. Chem. Soc. 1999, 121, 10842.

variety of transformations of allenes. During our study on Pd-catalyzed cyclization of allenynes, 12 we found an unusual carbon—carbon cleavage of π -allylpalladium intermediates (Scheme 1).

Here we report these Pd-catalyzed carbon—carbon bond cleavages of hydroxy-containing π -allylpalladium intermediates (A). It was expected that the initially formed π -allylpalladium intermediate might be cyclized with the internal nucleophile, OH, to form either the oxetane or the oxane heterocycle, Id but the π -allylpalladium intermediate (A) was reductively eliminated to form the arylated 1,3-diene product A and the aldehyde A in excellent yields, respectively (eq 1 and Table 1). First, we examined this reaction in various solvents using allenol A and iodobenzene (A) in the presence of A2CO3 (entries A1-6).

Among the various solvents we tested, the highest yield of the product diene **4a** (87%) and its counterpart, benz-aldehyde (**5**, 82%), was obtained in refluxing 1,4-dioxane. ¹⁵ Next, we carried out the Pd-catalyzed arylative fragmentations with various aryl iodides **2b**—**e** and aryl bromides **2f**,**g**, **3a**,**b** in 1,4-dioxane. The allenol **1a** under these conditions were cleanly coupled separately with 4-iodoanisole (**2b**),

Table 1. Palldium-Catalyzed Arylative Fragmentations of 2,2-Dimethyl-1-phenyl-3,4-pentadien-1-ol with Aryl Halides 2 and 3

entry	ArX	Solvents	temp (°C)/time (h)	product	% yield
1	2a	toluene	reflux/24	4a	55
2	2a	$CHCl_3$	reflux/24	4a	45
3	2a	1,4-dioxane	reflux/6	4a	87
4	2a	DMF	110/6	4a	74
5	2a	DMSO	110/6	4a	62
6	2a	ethanol	reflux/4	4a	73
7	2b	1,4-dioxane	reflux/6	4b	81
8	2c	1,4-dioxane	reflux/6	4c	85
9	2d	1,4-dioxane	reflux/6	4d	80
10	2e	1,4-dioxane	reflux/6	4e	90
11	2f	1,4-dioxane	reflux/6	4f	89
12	2g	1,4-dioxane	reflux/6	4g	78
13	3a	1,4-dioxane	reflux/6	4a	79
14	3b	1,4-dioxane	reflux/6	4b	81
	2b (- 2c (-l 2d (-		el e	3a (-H) 3b (-OC	—Br :H ₃)

4-nitroiodobenzene (**2c**), 4-iodotoluene (**2d**), and 1-iodonaphthalene (**2e**) and subsequently cleaved to the arylated conjugated dienes **4b**—**e** in 81%, 85%, 80%, and 90% yields, respectively (entry 7—10). Aryl bromides such as 2-bromonaphthalene (**2f**), 2-bromotoluene (**2g**), bromobenzene (**3a**), and 4-bromoanisole (**3b**) also worked well to give **4f**, **4g**, **4a**, and **4b** in 89%, 78%, 79%, and 81% yields, respectively (entries 11—14). Note that sterically hindered 2-bromotoluene also gave the product **4g** in high yield (78%), despite its steric hindrance (entry 12).

Structural variations of the allenol 1 were tested to see whether the fragmentation of π -allylpalladium intermediates A might be affected by groups attached to the OH group. The phenyl group was replaced by H(1b), *n*-butyl (1c), vinyl (1d), and alkynyl (1e) for systematic study (eq 2 and Table 2). 16 All allenols possessing a hydroxyl group smoothly underwent the present reactions with iodobenzene (2a) to give the phenyl-substituted diene 4a and the corresponding aldehydes. The simple allenol 1b gave a slightly lower yield (45%) of the product **4a**. Allenol **1c** also underwent the present reactions with aryl iodides 2a-d and aryl bromides **3a,b** but less efficiently than the phenyl-substrate **1a** to the aryl-substituted dienes 4a-d in 71-88% yields. Allenol 1d with iodobenzene (2a) gave the products 4a in 69% yield. Allenol 1e bearing an alkynyl group was less efficient than the other allenols 1a-d under these conditions to give the expected products 4 and in some cases (6g) the cyclized

3326 Org. Lett., Vol. 4, No. 19, 2002

⁽¹⁰⁾ Urabe, H.; Takeda, T.; Hideura, D.; Sato, F. J. Am. Chem. Soc. 1997, 119, 11295.

^{(11) (}a) Arredondo, V. M.; McDonald, F. E.; Marks, T. J. *J. Am. Chem. Soc.* **1998**, *120*, 4871. (b) Arrendondo, V. M.; Tian, S.; McDonald, F. E.; Marks, T. J. *J. Am. Chem. Soc.* **1999**, *121*, 3633.

^{(12) (}a) Oh, C. H.; Yoo, H. S.; Jung, S. H. Chem. Lett. **2001**, 1288. (b) Oh, C. H.; Jung, S. H.; Rhim, C. Y. Tetrahedron Lett. **2001**, 42, 8669.

⁽¹³⁾ For Pd-catalyzed rearrangement involving a strained carbon—carbon bond-cleavage, see: (a) Nagao, Y.; Ueki, A.; Asano, K.; Tanaka, S.; Sano, S.; Shiro, M. Org. Lett. 2002, 4, 455. (b) Yoshida, M.; Sugimoto, K.; Ihara, M. Tetrahedron Lett. 2000, 41, 5089. (c) Satoh, T.; Jones, W. D. Organometallics 2001, 20, 2916. (d) Edelbach, B. L.; Lachicotte, R. J.; Jones, W. D. J. Am. Chem Soc. 1998, 120, 2843. (e) Nishimura, T.; Uemura, S. J. Am. Chem. Soc. 2000, 122, 11015. For a Rh-catalyzed C—C bond cleavage, see: (g) Jun, C.-H.; Lee, H.; Moon, C. W.; Hong, H.-S. J. Am. Chem. Soc. 2001, 123, 8600. (h) Jun, C.-H.; Lee, H.; Lim, S.-G. J. Am. Chem. Soc. 2001, 123, 751. (i) van der Boom, M. E.; Liou, S.-Y.; Ben-David, Y.; Gozin, M.; Milstein, D. J. Am. Chem. Soc. 1998, 120, 13415.

^{(14) (}a) Jonasson, C.; Horváth, A.; Bäckvall, J.-E. *J. Am. Chem. Soc.* **2000**, *122*, 9600. (b) Ma, S.; Li, L. *Org. Lett.* **2000**, 2, 941. (c) Kuwabe, S.-i.; Torraca, K. E.; Buchwald, S. L. *J. Am. Chem. Soc.* **2001**, *123*, 12202. (d) Larock, R. C.; Veraprath, S.; Lau, H. H.; Fellows, C. A. *J. Am. Chem. Soc.* **1984**, *106*, 5274. (e) Walkup, R. D.; Guan, L.; Kim, Y. S.; Kim, S. W. *Tetrahedron Lett.* **1995**, *36*, 3805.

⁽¹⁵⁾ When K₂CO₃ was replaced by triethylamine, the reaction did not occur at all in toluene and 1,4-dioxane even after refluxing for 12 h and a low conversion in DMF was obtained at 110 °C.

^{(16) (}a) Schuster, H. F.; Coppola, G. M. Allenes in Organic Synthesis; Wiley: New York, 1984. (b) Pasto, D. J. Tetrahedron 1984, 40, 2805. (c) Mori, K.; Nukada, T.; Ebata, T. Tetrahedron 1981, 37, 1343.

Table 2. Arylative Fragmentations of Allenol ${\bf 1}$ with Aryl Halides ${\bf 2}$ and ${\bf 3}$

R = H- (1b), n-Bu- (1c), CH₂=CH- (1d), t-C₄H₉-C=C--(1e)

allenol	Ar-X	temp (°C)/time (h)	product	% yield
1b	2a	reflux/12	4a	45
1c	2a	reflux/6	4a	88
1c	2b	reflux/24	4b	71
1c	2c	reflux/6	4 c	87
1c	2d	reflux/12	4d	71
1c	3a	reflux/10	4a	78
1c	3b	reflux/24	4b	71
1d	2a	80/14	4a	69
1e	2a	80/16	4a	77
1e	2d	80/10	4d	43
1e	2f	80/10	4f	47
1e	2 g	80/10	4g, 6g	34, 21

products along with some unidentified polymeric products. Our attention was then paid to the simple allenol **1f**. The arylative fragmentation of the allenol **1f** with iodobenzene (**2a**), 4-iodoanisole (**2b**), 4-nitroiodobenzene (**2c**), and 1-iodonaphthalene (**2e**) were carried out under the similar conditions except the reaction solvent. These reactions worked better in DMF than in 1,4-dioxane to give the expected products **7a**—**e** in good yields (eq 3).

Finally, the methyl substituents in both allenols **8a** and **8b** did not prevent the arylative fragmentations with iodobenzene (**2a**) to give **9a** and **9b** in 84% and 78% (an *E/Z* mixture of 1:3 ratio) yields, respectively.

Ph OH
$$\frac{3 \text{ mol% Pd(PPh_3)_4}}{\text{R}^1 \text{ R}^2}$$
 $\frac{\text{K}_2\text{CO}_3 (1.5 \text{ eq})}{1,4\text{-dioxane}}$ $\frac{\text{R}^1 \text{ R}^2}{\text{Ph}}$ (4)

8a (R¹, R² = Me, H)

8b (R¹, R² = H, Me)

9a (84%)

9b (78%)

A mechanistic interpretation is proposed as shown in Scheme 1. Oxidative addition of Pd(0) to aryl halides is now a generally accepted process to form arylpalladium halides, whose aryl group added to the central carbon of allene 1 via carbopalladation to form the intermediate A. The π -allylpalladium intermediate A might be decarbopalladated to form the fragmentation products 4 and α -hydroxyalkylpalladium intermediate B. The intermediate B can be β -eliminated to form the carbonyl compound 5 and HPdX species, which can reform Pd(0) species by reaction with a base.

In summary, we have shown highly unusual decarbopalladations of π -allylpalladium intermediates formed from acyclic 3-allen-1-ols. These new reactions involve π -allylpalladium intermediates A, which were reductively eliminated via carbon—carbon cleavage to the arylated dienes and the resulting α -hydroxyalkylpalladium intermediates B, which were further reductively eliminated to the corresponding aldehydes (Scheme 1).

Acknowledgment. We wish to acknowledge the financial support of KOSEF (2001-1-123-001-5), Korea and Center for Molecular Design and Synthesis (CMDS).

Supporting Information Available: Characterization data for compounds 4a-g, 6g, 7a,b,c,e, and 9a,b. This material is available free of charge via the Internet at http://pubs.acs.org.

OL026659M

Org. Lett., Vol. 4, No. 19, 2002